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Abstract. A differential equation approach to the perturbation theoretic correction for excited
hydrogenic states is introduced. The radial equations for the problem are solved in terms of
known transcendental functions and the method to determine the complete primitive is discussed.
The constructed perturbative correction to the wavefunction is adapted to evaluate the dipole
polarizability of hydrogenic atoms.

1. Introduction

The displacement of energy levels of an atom placed in a static homogeneous electric field
E goes by the name Stark effect and is calculated by using perturbation theory providedE is
weak enough to produce energy shifts which are small compared with the distances between
neighbouring energy levels of the atom, including the fine structure interval. The quadratic
Stark effect is closely related with the induced dipole polarizability [1]. It is not convenient
to use the Rayleigh–Schrödinger perturbation theory (RSPT) [2] to calculate this quadratic
effect since it would then be necessary to deal with infinite sums of complicated form [3].
Instead, it is easier to work with a simple variant [4] of the RSPT in which the perturbation
corrections to wavefunctions are obtained from the solution of nonhomogeneous differential
equations. Because of our interest in the dipole polarizability we shall restrict ourselves
only to the first-order correction to the wavefunction.

Let H be the Hamiltonian of the perturbed system written as

H = H0+ λH ′. (1)

HereH0 stands for the solvable Hamiltonian of the unperturbed system andH ′ is a small
perturbation overH0 with a coupling constantλ. In the differential equation approach
noted above the eigenket|ψ1〉 for the first-order correction to the unperturbed eigenket|ψ0〉
satisfies the inhomogeneous equation

(E0−H0)|ψ1〉 = H ′|ψ0〉 − |ψ0〉〈ψ0|H ′|ψ0〉 (2)

with

H0|ψ0〉 = E0|ψ0〉. (3)

It is well known that forH ′ = Er cosθ , the equation in (2) can be solved for|ψ1〉 whenE0

is nondegenerate. Throughout this paper we shall use Hartree atomic units. The expression
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for |ψ1〉 when used to calculate the second-order perturbed energy for the ground state of
the hydrogen atom gives an exact value for the dipole polarizability. In the presence of
degeneracy, the solution of (2) is obstructed by the solvability condition [5]. Thus, the
treatment of the excited states of hydrogen and hydrogen-like atoms by the differential
equation approach needs a separate consideration. Fortunately, the solvability condition
of (2) for dealing with perturbative corrections to degenerate states can be satisfied by
replacing|ψ0〉〈ψ0| by

∑
γ∈degenerate subspace|ψγ 〉〈ψγ | [6]. This replacement is equivalent to

multiplyingH ′ by projection operators that exclude degenerate-state contributions [7]. Thus,
the appropriate inhomogeneous equation that can be used to obtain the first-order correction
to wavefunctions belonging to a degenerate energy level is given by

(E0−H0)|ψ1〉 = H ′|ψ0〉 −
∑
γ

|ψγ 〉〈ψγ |H ′|ψ0〉. (4)

The representation-space version of (4) has been used by Jhanwar and Meath [8] and Au
[7] to calculate dipole and multipole polarizabilities for hydrogenic bound states.

In this work we wish to solve the inhomogeneous equation in (4) in terms of known
transcendental functions and thereby supplement the series-integration method [7, 8] which
requires the use of certain complicated recurrence relations. The solutions obtained by us
refer to a hydrogenic atom placed in a constant electric field and, as we shall see, are very
useful to calculate dipole polarizabilities for arbitrary hydrogenic states. In section 2 we
take the projection of (4) into ther-space and carry out the separation of variables. If the
perturbation is a homogeneous electric field ther-space equation decomposes naturally into
two uncoupled radial equations because of the dipole parity selection rule. Further, we
note that these two equations could also be written as a single equation. In section 3 we
relate these radial equations to a nonhomogeneous differential equation for the confluent
hypergeometric function given in Babister [9] and obtain their solutions in terms of known
transcendental functions. Since the dipole polarizability has the form of a second-order
perturbed energy, in section 4 we use the results for correction to the wavefunction to
compute numbers for dipole polarizabilities of highly excited hydrogenic bound states and
present some concluding remarks.

2. Operator equation (4) in the representation space

As a first step to derive a physico-mathematical method for the solution of (4), we take its
projection in ther-space. This gives

(E0−H0(r))ψ1(r) = H ′(r)ψ0(r)−
∑
γ

ψγ (r)

∫
ψγ (r

′)H ′(r′)ψ0(r
′) d3r ′. (5)

In (5), H0(r) involves the appropriate Coulomb interaction for aZ-electron atom.
Obviously,

ψ0(r) = Rn,l(r)Yml (θ, φ). (6)

HereYml (θ, φ) stands for the scalar spherical harmonic andRn,l(r) stands for the bound-state
solution of the Coulomb problem given by,

Rn,l(r) = Nn,lρle
−ρ
2 L2l+1

n−l−1(ρ) (7)

with

Nn,l =
[

4Z3(n− l − 1)!

n4(n+ l)!
] 1

2

. (8)
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In (7) Lks (·) stands for the associated Laguerre polynomial of orders and ρ = 2Zr
n
.

Because of our interest in atomic polarizabilities for arbitrary values of (n, l) we take
H ′(r) = z = r cosθ . SinceH ′ can connect only the states of opposite parity, we choose
the solution of (5) in the form

ψ1(r) = Fn,l(r)Yml−1(θ, φ)+Gn,l(r)Y
m
l+1(θ, φ). (9)

We now implement the dipole selection rule, perform the sum over degenerate states and
carry out the separation of variables. We thus obtain, from (5) the following radial equations[
ρ

d2

dρ2
+ 2

d

dρ
− ρ

4
+ n− l(l − 1)

ρ

]
Fn,l(ρ)

= n2ρ

2Z2
A(l,m)[ρRn,l + B(n, l)Rn,l−1] l > 1 (10)

and[
ρ

d2

dρ2
+ 2

d

dρ
− ρ

4
+ n− (l + 1)(l + 2)

ρ

]
Gn,l(ρ)

= n2ρ

2Z2
A(l + 1, m)[ρRn,l + B(n, l + 1)Rn,l+1] l > 0 (11)

with

A(l,m) =
[

l2−m2

(2l − 1)(2l + 1)

] 1
2

(12)

and

B(n, l) = 3n5Nn,lNn,l−1(n+ l)!
8Z4(n− l − 1)!

. (13)

The solutions of (10) and (11) are subject to the constraint

〈ψ0|ψ1〉 = 0. (14)

Au [7] found that the uncoupled equations forFn,l(r) andGn,l(r) could be represented by
a single inhomogeneous differential equation by assuming

ψ1(r) = Nn,le− r
n

∑
j

Rj (r)αj (1, l)Y
0
j (15)

whereαj (1, l) represents the usual vector coupling coefficient given by

αj (1, l) =
√
(2l + 1)(2j + 1)

(
1 l j

0 0 0

)
. (16)

The radial functionRj(r) satisfies the inhomogeneous differential equation

r
d2

dr2
(rRj )− j (j + 1)Rj − 2r2

n

d

dr
Rj + 2(n− 1)

n
rRj

= 2

(
2

n

)λ n−l−1∑
k=0

(n− l − 1)k
(2l + 2)k

(
2

n

)k
rl+k+3 (17)

with the Pochhammer symbol

(α)i = 0(α + i)

0(α)
. (18)

The solution of (17) in conjunction with (18) through the triangular condition on the 3-j

symbol involved in (16) reproduces the combination in (9) such that the equivalence between
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the approach of Jhanwar and Meath [8] and that of Au [7] is obvious. In the following we
deal with the nonhomogeneous equations in (10) and (11) and relate them with well known
transcendental equations studied by Babister [9]. Admittedly, one would like to regard such
a viewpoint as more systematic and an improvement over the power series solution tried
earlier.

3. Transcendental-function representation ofFn,l(ρ) and Gn,l(ρ)

The functionsFn,l(ρ) andGn,l(ρ) satisfy nonhomogeneous linear second-order differential
equations given in (10) and (11). We now show that their associated homogeneous equation
is the confluent hypergeometric equation given by

x
d2y

dx2
+ (c − x)dy

dx
− ay = 0 (19)

wherea and c are constants. The theory of confluent hypergeometric equations is fully
set out in Buchholz [10] and Erdelyi [11]. However, for our use we note that the two
independent solutions of (19) are given by

y1 = 1F1(a; c; x) = 0(c)

0(a)

∞∑
n=0

0(a + n)
0(c + n)

xn

n!
(20)

and

y2 = x1−c
1F1(a − c + 1; 2− c; x). (21)

The results in (20) and (21) are referred to as the regular and irregular confluent
hypergeometric functions. Because of physical boundary conditions only involved the1F1(.)

functions will enter as the complementary functions in the solutions of (10) and (11) and
the complete primitive will be found out accordingly.

We now change the dependent variables in (10) and (11) by substituting

Fn,l(ρ) = ρl−1e−
ρ

2M(ρ) (22)

and

Gn,l(ρ) = ρl+1e−
ρ

2N(ρ) (23)

whereM(ρ) andN(ρ) are polynomials inρ. For the sake of brevity we omit the subscripts
n and l in the right-hand side of (22) and (23). From (10), (11), (22) and (23) we obtain,

ρM ′′ + (2l − ρ)M ′ + (n− l)M = n3A(l,m)Nn,l

4z3

×
n−l−1∑
j=0

[
(−1)j

(n+ l)!
j !(n− l − 1− j)!(2l + j)!

×
{

ρ3+j

(2l + j + 1)
− 3ρ2+j + 3(2l + j)ρ1+j

}]
(24)

and

ρN ′′ + (2l + 4− ρ)N ′ + {n− (l + 2)}N = n3A(l + 1, m)Nn,l
4Z3

×
n−l−1∑
j=0

[
(−1)j

(n+ l)!ρj+1

j !(n− l − 1− j)!(2l + j + 1)!
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×
{

1+ 3(n+ l + 1)(n− l − 3)

(2l + j + 2)(2l + j + 3)

}]
. (25)

In writing (24) and (25) we have also used (7) with the well known expression for associated
Laguerre polynomial.

Since the right-hand sides of these equations involve finite sum, their solutions can be
related to the solution of nonhomogeneous confluent hypergeometric equation

x
d2y

dx2
+ (c − x)dy

dx
− ay = xσ−1 (26)

whereσ is a constant. Thus we have

M(ρ) = CM1F1(l − n; 2l; ρ)+ n
3A(l,m)Nn,l

4Z3

×
n−l−1∑
j=0

[
(−1)j

(n+ l)!
j !(n− l − 1− j)!(2l + j)!

×
{
θj+4(l − n, 2l; ρ)
(2l + j + 1)

− 3θj+3(l − n, 2l; ρ)+ 3(2l + j)θj+2(l − n, 2l; ρ)
}]
(27)

and

N(ρ) = CN 1F1(l + 2− n; 2l + 4; ρ)+ n
3A(l + 1, m)Nn,l

4Z3

×
n−l−1∑
j=0

[
(−1)j

(n+ l)!
j !(n− l − 1− j)!(2l + j + 1)!

×
{

1+ 3(n+ l + 1)(n− l − 1− j)
(2l + j + 2)(2l + j + 3)

}
θj+2(l + 2− n, 2l + 4; ρ)

]
(28)

with CM andCN as the constants of integration. The quantityθj (·) is expressed in terms
of generalized hypergeometric function as

θσ (a, c; x) = xσ

σ (σ + c − 1)
2F2(1, σ + a; σ + 1, σ + c; x). (29)

From (22), (23), (27) and (28) we obtain

Fn,l(ρ) = ρl−1e−
ρ

2

[
CM1F1(l − n; 2l; ρ)+ n

3A(l,m)Nn,l

4Z3

×
n−l−1∑
j=0

[
(−1)j

(n+ l)!
j !(n− l − 1− j)!(2l + j)!

×
{
θj+4(l − n, 2l; ρ)
(2l + j + 1)

− 3θj+3(l − n, 2l; ρ)+ 3(2l + j)θj+2(l − n, 2l; ρ)
}]]

l > 1 (30)

and

Gn,l(ρ) = ρl+1e−
ρ

2

[
cN 1F1(l + 2− n; 2l + 4; ρ)+ n

3A(l + 1, m)Nn,l
4Z3

×
n−l−1∑
j=0

[
(−1)j

(n+ l)!
j !(n− l − 1− j)!(2l + j + 1)!
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×
{

1+ 3(n+ l + 1)(n− l − 1− j)
(2l + j + 2)(2l + j + 3)

}
θj+2(l + 2− n, 2l + 4; ρ)

]]
l > 0. (31)

For given values ofn and l the functionsθj (·) occurring in (27) and (28) can be written in
terms of elementary functions by using the recurrence relation

(σ + a)θσ+1(a, c; x) = σ(σ + c − 1)θσ (a, c; x)− xσ . (32)

We also require the use of the following [9, 10].

θσ (1, c; x) = xσ

σ (σ + c − 1)
1F1(1; σ + c; x) (33)

and

z 1F1(a; b + 1; z) = b[ 1F1(a; b; z)− 1F1(a − 1; b; z)]. (34)

Some remarks on fixing the values ofCM andCN are now in order. The quantity(l−n)
is always a negative integer such that the1F1(·) function in (30) is always a polynomial.
On the other hand, in addition to taking up possible negative integral values, the quantity
(l+2−n) can also be 0 and 1. In general,CM andCN are determined from the orthogonality
relation in (14) which, in view of (9), decomposes into two radial equations∫ ∞

0
Rn,l−1(r)Fn,l(r)r

2 dr = 0 and
∫ ∞

0
Rn,l+1(r)Gn,l(r)r

2 dr = 0. (35)

When l + 2− n = 1, the1F1(·) function in (31) becomes an infinite series which diverges
asymptotically. In this case we have found that some multiple (sayδ) of the same
hypergeometric function occurs in the inhomogeneous part of (31) in addition to a well-
behaved polynomial part obtained by repeated application of the recurrence relation in (32).
The asymptotic boundary condition is then satisfied by setting(CN + δ) = 0. This is the
standard route one should follow to construct the expression forGn,l(ρ) whenl+2−n = 1.
In the next section we use (30) and (31) to calculate atomic polarizabilities for degenerate
bound states. This gives us an opportunity to explicitly demonstrate the algebraic procedure
to be followed to obtain results forCM andCN andθσ (a, c; z).

4. Polarizabilities for hydrogenic bound states

The expression for polarizability for an arbitrary bound state(n, l,m) is given by [6]

α(n, l,m) = −2
∫
ψ0(r)r cosθψ1(r) d3r. (36)

From (6), (9) and (36) we can write

α(n, l,m) = α1(n, l,m)+ α2(n, l,m) (37)

with

α1(n, l,m) = −2
∫ ∞

0
r3Rn,l(r)Fn,l(r) dr

∫
Yml

?
(θ, φ) cosθYml−1(θ, φ)d� (38)

and

α2(n, l,m) = −2
∫ ∞

0
r3Rn,l(r)Gn,l(r) dr

∫
Yml

?
(θ, φ) cosθYml+1(θ, φ)d�. (39)

For numerical evaluation of polarizabilities one will require the values ofCM and CN
beforehand. We deal with this for a particular value of the principal quantum number.
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We calculate the constants of integration in (30) and (31) forn = 4. Herel can vary
from 0 to 3. Forn = 4 andl = 3, (30) gives

F4,3(r) = (Zr)2

4
e−

Zr
4

[
CM

(
1− Zr

12

)
+ A(3, m)

6
√

35Z
3
2

(
(3Zr)2

4
− (Zr)

3

16

)]
. (40)

In writing (40) we have made iterative use of the recurrence relation in (32). Using (40) in
the first orthogonality condition given in (35) we obtain

CM =
9
√

7
5A(3, m)

Z3/2
. (41)

Similar iterative use of (32) gives

G4,3(r) = (Zr)4

16
e−

Zr
4

[{
CN + 5A(4, m)

6
√

35Z3/2

}
1F1

(
1; 10; Zr

2

)
− A(4, m)

12
√

35Z3/2

(
10+ Zr

2

)]
.

(42)

In the derivation of (42) we have also used the three-term recurrence relation in (34). The
function 1F1(1, 10; Zr2 ) in (42) violates the asymptotic boundary condition forG4,3(r). We
circumvent this by demanding that the quantity in the curly brackets is zero and finally
obtain

G4,3(r) = − (Zr)
4

16
e−

Zr
4

A(4, m)

12
√

35Z3/2

(
10+ Zr

2

)
. (43)

The result for the integration constant inF4,2 can be obtained by using the same procedure
as was done forF4,3(r). However, evaluation ofCN for G4,2(r) can be done in a
straightforward way from only second orthogonality condition in (35) and one need not
take recourse to the use of asymptotic boundary condition, whatsoever. In general, we have
found that the constants inFn,l(r) andGn,l(r) are determined by the conditions in (35) with
the only exception for that ofGn,l(r) in the ground state of the spectral series, i.e.l = n−1.

Finally, we used the values ofF andG to obtain numbers for polarizabilities of the
hydrogen atom. It is important to note that calculation ofα1(·) and α2(·) from (38) and
(39) involved only elementary integrals. Table 1 gives these results as a function ofl and
n.

These results show that for a given value ofn, the polarizabilityα increases asl increases
and for fixedl the number decreases withm. This can be understood easily by using the
graphic language of Bohr. In the presence of an electric field the quantum orbits are
disturbed and the disturbance affects the various ellipses differently. The deformation in the
circular orbit appears to be more pronounced and it decreases gradually as the eccentricity of
the ellipse increases. This results in the behaviour of the numbers presented in table 1. The
use of our wavefunctions to compute values ofα for arbitraryn is quite straightforward.

Table 1. Dipole polarizabilities in au of the hydrogen atom forn = 4.

m

l 0 ±1 ±2 ±3

0 4 992
1 7 449.6 5 107.2
2 9 600 8 640 5 760
3 13 286.4 12 556.8 10 368 6720
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We, therefore, conclude by noting that our treatment of the Dalgarno–Lewis technique
for degenerate states represents an improvement over the power series and partial-wave
techniques discussed earlier [8, 7].
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